
Tracking Kernel Rate of Change
Pat Riehecky
CentOS Dojo - Feb 2022 - FERMILAB-SLIDES-22-002-SCD
4 Feb 2022

Pat Riehecky is not speaking as official spokesperson for:
● Fermi Research Alliance
● Fermi National Accelerator Laboratory
● US Department of Energy

Neither the United States nor the United States Department of Energy, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any data, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.

This is not an endorsement of any technology, software, service, or organization.

This presentation is an act of research, rather than a prescription of future practices.

Disclaimers

02/04/20222

Once again, I’ll be largely reading the slides to you…

Alas, I still couldn’t think of a better way to ensure a uniform understanding of the topics
ahead, simplify translation for non-english speakers, and provide a way to use the slide
deck as quick reference to extract relevant content for folks.

The Road Ahead in this Presentation

02/04/20223

A lot of what follows is an attempt to answer this question: How do I get a kernel module that
doesn’t ship with CentOS Stream working on CentOS Stream? What interfaces can I use? How
do I figure out what is changing? What resources exist?

To answer this we will need to explore the kernel interfaces, how things differ inside the EL
ecosystem, and what this means for your specific kmod.

External kernel modules and CentOS Stream

02/04/20224

Excerpts from The Linux Kernel Driver Interface:

● Please realize that this article describes the in kernel interfaces, not the kernel to
userspace interfaces. (emphasis added)

● ...Linux does not have a binary kernel interface, nor does it have a stable kernel interface.
● ...kernel developers find bugs in current interfaces, or figure out a better way to do things. If

they do that, they then fix the current interfaces to work better. When they do so, function
names may change, structures may grow or shrink, and function parameters may be
reworked. If this happens, all of the instances of where this interface is used within the
kernel are fixed up at the same time, ensuring that everything continues to work properly.
(emphasis added)

● Releasing a binary driver for every different kernel version for every distribution is a
nightmare, and trying to keep up with an ever changing kernel interface is also a rough job.

● What you want is a stable running driver, and you get that only if your driver is in the main
kernel tree.

Mainline Linux Driver Interface Stability

02/04/20225

https://www.kernel.org/doc/html/latest/process/stable-api-nonsense.html

Excerpts from Red Hat’s What is Kernel Application Binary Interface (kABI)? :

● The Kernel Application Binary Interface (kABI) is a set of in-kernel symbols used by drivers and
other kernel modules. Each major and minor Red Hat Enterprise Linux release has a set of in-
kernel symbols… (emphasis added)

● Once a symbol has been introduced into the kernel Application Binary Interface (kABI) for a
particular major release of Red Hat Enterprise Linux it will not be removed, nor will its meaning
be changed during that kernel major release's complete life cycle. (emphasis added)

● ...it can happen that a symbol in a kABI whitelist [stable list] needs to be changed
● Red Hat generally endeavors not to make changes even to non-stablelist kABI symbols in

regular security and errata updates but there is no guarantee that they will be compatible
within a same minor release.

● When non-stablelist kABI symbols are changed in kernel updates, it is not considered as kABI
breakage.

RHEL Kernel Driver Interface Stability

02/04/20226

https://access.redhat.com/solutions/444773

The userspace elements that consume kernel functionality should “just work” and “not
break”. Those guidelines come from the mainline kernel and are inherited in the RHEL
one.

For folks thinking about the userspace binary compatibility guide, that explicitly excludes
the kernel.

Link to presentation on that topic:
Thinking About Binary Compatibility and CentOS Stream

The RHEL kernel has a few “stable” symbols and a lot of “mutable” symbols. I prefer the
term “mutable” rather than “non-stable” as the symbols only change for cause, rather
than constantly. For example, 601 symbols (~ 2.9%) haven’t changed in the RHEL 8.5 GA
kernel since the RHEL 6.0 GA kernel – only 81 of them are on the stable list – and the
stable list isn’t intended to cross major versions.

RHEL Kernel Driver Interface Stability vs userspace

02/04/20227

https://access.redhat.com/articles/rhel8-abi-compatibility
https://wiki.centos.org/Events/Dojo/May2021

At minor releases within the RHEL product lifecycle (8.x, 9.x) the RHEL kernel is updated
with changes published in the CentOS Stream kernel since the last minor release (x-1).

For a while after the publication of a minor release, the two kernels are in sync.
Eventually the Stream Kernel runs ahead of RHEL. Later, RHEL catches up.

How does the Stream Kernel relate to RHEL releases?

02/04/20228

The CentOS Stream kernel is analogous to the “RHEL kernel” + δ (delta)

Ok, what then is δ? Here δ is just a placeholder for “changes to the source code from the
RHEL kernel today”.

Depending on a number of factors, δ will be zero sometimes.

For example, when RHEL 8.5 released on Nov 9, 2021 with the 4.18.0-348 kernel, CentOS
Stream 8 had been running it for 19 days (Oct 20, 2021). Until Nov 15, 2021, δ remained
zero. It went back to zero again on Nov 17, 2021 when the two distributions once again
ran the same kernel. Then on Dec 21, 2021 they fell out of sync, only to get back into
sync the very next day.

From Nov 9, 2021 to January 9, 2022 the RHEL kernel and the Stream kernel were in sync
for 58 of 61 days. Or put another way, on those 58 days δ = 0.

What is the CentOS Stream Kernel?

02/04/20229

RHEL 8.4 released the 4.18.0-305 kernel on May 18, 2021. On June 8, 2021, the CentOS
Stream 8 kernel gained a δ that would persist until Nov 9, 2021.

Or to put another way - on Nov 8, 2021 (the day before 8.5 released) δ was very much
not zero – and it became non-zero on June 8, 2021 in a way that persisted until Nov.

Proving two things are not equal is very different from being able to say how they diverge
at a specific time (δ) – or even measuring how that difference is expressed (ε epsilon) or
what the impact might be on your workloads.

Thankfully we are working with source code rather than calculus, so we are nearly done
with our ε-δ proofs (to measure the instantaneous rate of change)…. nearly

What is the CentOS Stream Kernel?

02/04/202210

Trying to define the CentOS Stream Kernel in a more formal (mathematical) language:

The LIMIT of the RHEL kernel as Time approaches the end of Full Support is the CentOS
Stream kernel.

For the less mathematically inclined: During Full Support, the RHEL kernel is, at regular
intervals, trying to be the CentOS Stream kernel. Each major and minor Red Hat
Enterprise Linux release has a set of in-kernel symbols they try to maintain, so the two
match most closely at minor release updates.

What is the CentOS Stream Kernel?

02/04/202211

What is the ε (difference expressed in behavior change) between 4.18.0-305.el8 and
4.18.0-310.el8? Do we measure it in lines changed, features added, function calls
changed, bugs fixed, user experience, or something else?

The patches added to the kernel are δ. I care that it exists; I care when it is non-zero and
makes ε non-zero. If δ is not zero, but ε is zero (however ε is quantified), I’m not sure I
care that something in the source changed.

RHEL uses modversion CRC checks stored in the RPM to expose the ABI honored by the
stable list. So that is what we’ll use to generate our δ. As for ε, that is about how your
module interfaces with the kernel (and your workflows).

How do I understand the differences?

02/04/202212

https://www.kernel.org/doc/html/latest/kbuild/modules.html?highlight=modver#module-versioning

To be clear, I’m not aware of a better way to do this. That is not the same as saying that
tracking the CRC changes provides a definitive picture of what is changing.

In my experience, folks care about how changes impact them. For example, if you’re not
using the mpt3sas driver changes there are not relevant to you. This is also true if your
card doesn’t have the silicon being targeted by this change. Counting raw checks on CRC
results is not workload specific and not necessarily behavior specific.

Additionally, these checks are limited in how much introspection they perform (none).
This is a good, if sad, thing. To get the introspection I’d want the kernel would need to
instrument itself to instrument itself to instrument itself…..

The modinfo srcversion is handy, but most useful for mainline kernels or kpatches, so
I’m going to ignore it here. It is neat, but not targeted by our current processes.

modversion is not a great way to do this

02/04/202213

https://access.redhat.com/errata/RHEA-2021:0210

RHEL6.4 backported a code change in readdir() cookies. As a result the 64bit inodes of ext4
were now represented by 64 bit integers (as they should be) on i686 systems (oh...).

The OpenAFS kmod filesystem cache uses the inode to manipulate its elements. This bypasses
a bunch of pointless directory traversal and makes cache poisoning a lot harder.

But, when the OpenAFS cache says “here are all my known inodes (32bit) of cached elements”
and the kernel wants 64bit inodes… Things work less well...

The modversion checksums did not find this. Why? The relevant code returns a struct of
pointers to the results, rather than the results - the size of the struct didn’t change, the size
of the pointer didn’t change – neither did the quantity of pointers. The value of the element
pointed-to did change. These checksums, by definition, cannot find this behavior.

This type of thing is a common pattern in the kernel. Rather than copy the results from
memory into something else so we can return it, it performs a zero-copy operation and just says
“I got what you wanted; it is over there.” This is a lot faster than a copy and return!

A Case Study: OpenAFS, 2.6.32-279.el6, ext4, on i686 (oversimplified)

02/04/202214

https://lwn.net/Articles/544520/
https://listserv.fnal.gov/scripts/wa.exe?A2=ind1303&L=SCIENTIFIC-LINUX-DEVEL&X=OE96A9CEBF22CA8040E&P=40773

Consider the following kernel interface:

ssize_t copy_file_range(int fd_in, loff_t *off_in, int fd_out,

 loff_t *off_out, size_t len, unsigned int flags);

When support for a new flag is added, does the CRC of the call/return change? No it does not.
The whole point of the flags parameter is to avoid changing the interface when new behavior
is added.

This pattern makes the development and maintenance of the interface easier. Today, the only
supported argument to flags on copy_file_range is 0. That will probably change at some
point. Detecting that is not something we can do from the interface level.

Having a flags argument is considered a Best Practice in the kernel. Admittedly, this example
is a function exposed to userspace, but the idea is clear – and you might want to use
copy_file_range in your kmod.

Example: Feature Flags

02/04/202215

Performing an analysis of the CRC differences will get us some sort of δ. But it won’t find
things like the readdir change or support for new flags. So it is really one type of
minimum δ, with no way to tell if it is also the maximum δ. In the end it is just a
defensible δ.

But what you want is ε – the expressed differences. Is a 32bit readdir() cookie on ext4 for
i686 a difference you care about or could even see? How about input validation on an
Intel Ethernet E810? What about the flags on an XFS filesystem? These are real world δ
examples. But if they aren’t expressed in your workflow, they aren’t relevant to your ε.

Calculating these differences doesn’t mean nothing, but neither does it tell you what will
be different when you are running this kernel in your environment with your code.

What then does all this setup mean?

02/04/202216

The RHEL 8.4⇨8.5 kernel transition provides a good reference case for what sorts of
changes happen, how they happen, and the parity between them.

1) Download all the kernel-core rpms from CentOS 8 and Stream 8 relevant to the
time frame

2) Run rpm -qp --provides $rpm |grep kernel\(| sort -u > $rpm.syms

3) Comparisons, tool of your choice

That was a lot of background, for “compare these two lists of things”, but the core
concepts are really “code changes” (δ) may not equal “behavior changes” (ε) in your
environment. And some code changes just aren’t traceable this way – and never will be.

Methodology #1 (finally)

02/04/202217

EL 8.4 kernels:

kernel-core-4.18.0-305.el8.x86_64.rpm

kernel-core-4.18.0-305.3.1.el8.x86_64.rpm

kernel-core-4.18.0-305.7.1.el8.x86_64.rpm

kernel-core-4.18.0-305.10.1.el8.x86_64.rpm

kernel-core-4.18.0-305.12.1.el8.x86_64.rpm

kernel-core-4.18.0-305.17.1.el8.x86_64.rpm

kernel-core-4.18.0-305.19.1.el8.x86_64.rpm

kernel-core-4.18.0-305.25.1.el8.x86_64.rpm

kernel-core-4.18.0-348.el8.x86_64.rpm

kernel-abi-stablelists-4.18.0-348.el8.noarch.rpm

CentOS Stream 8 kernels:

kernel-core-4.18.0-305.el8.x86_64.rpm

kernel-core-4.18.0-305.3.1.el8.x86_64.rpm

kernel-core-4.18.0-310.el8.x86_64.rpm

kernel-core-4.18.0-315.el8.x86_64.rpm

kernel-core-4.18.0-326.el8.x86_64.rpm

kernel-core-4.18.0-331.el8.x86_64.rpm

kernel-core-4.18.0-338.el8.x86_64.rpm

kernel-core-4.18.0-348.el8.x86_64.rpm

02/04/202218

Package List #1

$ wc -l kabi-rhel84/kabi_stablelist_x86_64

725 kabi-rhel84/kabi_stablelist_x86_64

$ wc -l kabi-rhel85/kabi_stablelist_x86_64

725 kabi-rhel85/kabi_stablelist_x86_64

$ diff kabi-rhel84/kabi_stablelist_x86_64 kabi-rhel85/kabi_stablelist_x86_64 |
wc -l

0

Line 1 of these files reads : [rhel8_x86_64_stablelist],

leaving 724 stable symbols listed

Datapoints (abi sizes)

02/04/202219

$ rpm -qp --provides kernel-core-4.18.0-305.el8.x86_64.rpm |grep kernel\(|
sort -u |wc -l

19849

$ rpm -qp --provides kernel-core-4.18.0-348.el8.x86_64.rpm |grep kernel\(|
sort -u |wc -l

20210

This means we have 724 stable symbols, 19,849 total symbols in the 305.el8 kernel and 20,210 total
symbols in the 348.el8 kernel on x86_64.

The stable symbols are ~3.5% of the total kernel symbols in RHEL 8 on x86_64.

Datapoints (abi sizes)

02/04/202220

This is a count of differences from the 8.4 GA kernel to the last 8.4 before 8.5:

[riehecky@leibniz el8]$ comm -1 -3 4.18.0-305.el8.x86_64.sym 4.18.0-305.3.1.el8_4.x86_64.sym |wc -l
0
[riehecky@leibniz el8]$ comm -1 -3 4.18.0-305.el8.x86_64.sym 4.18.0-305.7.1.el8_4.x86_64.sym |wc -l
16
[riehecky@leibniz el8]$ comm -1 -3 4.18.0-305.el8.x86_64.sym 4.18.0-305.10.2.el8_4.x86_64.sym |wc -l
17
[riehecky@leibniz el8]$ comm -1 -3 4.18.0-305.el8.x86_64.sym 4.18.0-305.12.1.el8_4.x86_64.sym |wc -l
17
[riehecky@leibniz el8]$ comm -1 -3 4.18.0-305.el8.x86_64.sym 4.18.0-305.17.1.el8_4.x86_64.sym |wc -l
80
[riehecky@leibniz el8]$ comm -1 -3 4.18.0-305.el8.x86_64.sym 4.18.0-305.19.1.el8_4.x86_64.sym |wc -l
81
[riehecky@leibniz el8]$ comm -1 -3 4.18.0-305.el8.x86_64.sym 4.18.0-305.25.1.el8_4.x86_64.sym |wc -l
84

Remember, there are
19,849 total symbols
in the 8.4 kernel

Datapoints (RHEL 8.4 consistency to 8.4 launch kernel)

02/04/202221

305.3.1 305.7.1 305.10.2 305.12.1 305.17.1 305.19.1 305.25.1
0

40

80

120

160

0
16 17 17

80 81 84
Diff
RHEL Stable kABI

84 symbols is ~0.4%

This is a count of differences and similarities from the 8.4 GA kernel and the last 8.4 kernel against the
8.5 kernel:

[riehecky@leibniz el8]$ comm -1 -3 4.18.0-305.el8.x86_64.sym 4.18.0-348.el8.x86_64.sym |wc -l
6244
[riehecky@leibniz el8]$ comm -1 -3 4.18.0-305.25.1.el8_4.x86_64.sym 4.18.0-348.el8.x86_64.sym |wc -l
6242
[riehecky@leibniz el8]$ comm -1 -2 4.18.0-305.el8.x86_64.sym 4.18.0-348.el8.x86_64.sym |wc -l
13966
[riehecky@leibniz el8]$ comm -1 -2 4.18.0-305.25.1.el8_4.x86_64.sym 4.18.0-348.el8.x86_64.sym |wc -l
13968

This is ~31.5%
of the kernel
symbols
changing.

Datapoints (RHEL 8.4 GA kernel and final kernel to RHEL 8.5 kernel)

02/04/202222

305.el8 305.25.1.el8_4
0

2000

4000

6000

8000

10000

12000

14000

6244 6242
Diff from 348.el8
Same
Stable (174)

Only two of the symbols
introduced by a later 8.4
kernel made it into 8.5

305.3.1.el8 310.el8 315.el8 326.el8 331.el8 338.el8 348.el8 (8.5 GA)
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0
1407

2761

5576 6043 6093 6244

19675
18360

17083

14355 13986 13940 13792

Stream Drifts from 8.4

Diff from 305.el8
Same
Stable (174)

Datapoints (RHEL 8.4 GA against CentOS Stream)

02/04/202223

305.3.1.el8 310.el8 315.el8 326.el8 331.el8 338.el8 348.el8 (8.5 GA)
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

5883
5106

4184

1248
393 159 0

13792
14661

15660

18683
19636 19874 20036

174 174 174 174 174 174 174

Stream becomes 8.5

Diff from 348.el8
Same
Stable

Datapoints (RHEL 8.5 GA against CentOS Stream)

02/04/202224

Other than the obvious, “some kernel symbols change when the kernel changes”, I’m
unclear how to draw anything useful from these numbers.

Like discussions about ε, these numbers don’t mean anything until you add a use case.
There are 6244 symbol changes between RHEL 8.4 and RHEL 8.5 – each one means
something. Glossing over them with a chart discards their value and any complexity in
adapting to those changes.

We’re looking at the “kABI” because we want to build/load modules against it, so let’s look
at some actual kmods out in the wild. These kmods do something, so they at least
represent a use case – even if they are not specific to the actual workflow folks are using.

Initial Conclusions (if any)

02/04/202225

We can track which kmods break and with which versions using dnf repoclosure.

The kmod packages I’ve pulled down for testing appear to target the 8.5 kernel or are the
latest available.

Selection criteria are a little less critical here as we’re looking for places where the
packages don’t work. A slight variety of build targets can help identify these locations.

Methodology #2

02/04/202226

kmod-3w-9xxx-4.19-7.el8s.x86_64.rpm

kmod-3w-sas-4.19-5.el8s.x86_64.rpm

kmod-arcmsr-4.19-7.el8s.x86_64.rpm

kmod-exfat-5.16-1.el8s.x86_64.rpm

kmod-isci-5.0-5.el8s.x86_64.rpm

kmod-iwlegacy-5.12-8.el8s.x86_64.rpm

kmod-jme-5.6-4.el8s.x86_64.rpm

kmod-megaraid_mbox-4.18-7.el8s.x86_64.rpm

kmod-mvsas-4.18-7.el8s.x86_64.rpm

kmod-ntfs3-5.15-4.el8s.x86_64.rpm

kmod-pata_amd-5.13-5.el8s.x86_64.rpm

kmod-pata_atiixp-5.13-5.el8s.x86_64.rpm

kmod-pata_jmicron-4.18-5.el8s.x86_64.rpm

kmod-pata_via-4.19-5.el8s.x86_64.rpm

kmod-sata_nv-5.4-5.el8s.x86_64.rpm

kmod-sata_sil24-5.4-5.el8s.x86_64.rpm

kmod-sata_sil-5.4-5.el8s.x86_64.rpm

kmod-sata_sis-4.18-6.el8s.x86_64.rpm

kmod-sata_uli-4.18-5.el8s.x86_64.rpm

kmod-sata_via-5.4-5.el8s.x86_64.rpm

kmod-skge-5.7-7.el8s.x86_64.rpm

kmod-sky2-5.8-7.el8s.x86_64.rpm

kmod-wireguard-1.0.20211208-1.el8s.x86_64.rpm

kmod-xt_time-5.9-5.el8s.x86_64.rpm

02/04/202227

Package List #2 – kmod SIG CentOS Stream 8

kmod-3c59x-0.0-4.el8_4.elrepo.x86_64.rpm

kmod-3w-xxxx-2.26.02.003-5.el8_4.elrepo.x86_64.rpm

kmod-aacraid-1.2.1-6.el8_5.elrepo.x86_64.rpm

kmod-aic7xxx-7.0-1.el8_5.elrepo.x86_64.rpm

kmod-ath5k-0.0-6.el8_5.elrepo.x86_64.rpm

kmod-be2net-12.0.0.0-8.el8_5.elrepo.x86_64.rpm

kmod-cxgb3-1.1.5-6.el8_5.elrepo.x86_64.rpm

kmod-e100-3.5.24-5.el8_4.elrepo.x86_64.rpm

kmod-ecryptfs-0.0-4.el8_5.elrepo.x86_64.rpm

kmod-forcedeth-0.0-6.el8_4.elrepo.x86_64.rpm

kmod-ftsteutates-20190927-5.el8_4.elrepo.x86_64.rpm

kmod-hfsplus-0.1-2.el8_5.elrepo.x86_64.rpm

kmod-hpsa-3.4.20-6.el8_5.elrepo.x86_64.rpm

kmod-ib_qib-1.11-2.el8_5.elrepo.x86_64.rpm

kmod-lru_cache-0.0-3.el8_5.elrepo.x86_64.rpm

kmod-mbgclock-4.2.10-5.el8_5.elrepo.x86_64.rpm

kmod-mlx4-4.0-6.el8_5.elrepo.x86_64.rpm

kmod-mpt3sas-37.101.00.00-1.el8_5.elrepo.x86_64.rpm

kmod-mptfc-3.04.20-6.el8_5.elrepo.x86_64.rpm

kmod-mptsas-3.04.20-6.el8_5.elrepo.x86_64.rpm

kmod-mptspi-3.04.20-6.el8_5.elrepo.x86_64.rpm

kmod-mvsas-0.8.16-5.el8_5.elrepo.x86_64.rpm

kmod-qla2xxx-10.02.00.106-1.el8_5.elrepo.x86_64.rpm

kmod-r8168-8.048.03-2.el8_4.elrepo.x86_64.rpm

kmod-reiserfs-0.1-6.el8_5.elrepo.x86_64.rpm

kmod-rtl8187-0.0-5.el8_5.elrepo.x86_64.rpm

kmod-sata_mv-1.28-1.el8_5.elrepo.x86_64.rpm

kmod-usbip-0.0-9.el8_5.elrepo.x86_64.rpm

kmod-v4l2loopback-0.12.5-3.el8_5.elrepo.x86_64.rpm

02/04/202228

Package List #2 – ELRepo EL8 kmods

kmod-nvidia-418.226.00-4.18.0-348-418.226.00-3.el8.x86_64.rpm

kmod-nvidia-450.156.00-4.18.0-348-450.156.00-3.el8.x86_64.rpm

kmod-nvidia-460.106.00-4.18.0-348-460.106.00-3.el8.x86_64.rpm

kmod-nvidia-470.82.01-4.18.0-348-470.82.01-3.el8.x86_64.rpm

kmod-nvidia-495.29.05-4.18.0-348-495.29.05-3.el8.x86_64.rpm

kmod-zfs-2.0.6-1.el8.x86_64.rpm

kmod-lustre-client-2.12.8_6_g5457c37-1.el8.x86_64.rpm

The ELRepo nvidia drivers are great too; this is mostly for variety of
packagers and methods (more on that later).

02/04/202229

Package List #2 – nvidia, OpenZFS and Lustre EL8 kmods

kmod-a3818-1.6.7-1.el8.x86_64.rpm

kmod-openafs-1.8.8.1-1.4.18.0_348.el8.x86_64

These kmod packages are not currently available directly to the public,
but can be built up from the vendor sources without much trouble.

- https://www.caen.it/products/a3818/

- https://www.openafs.org/release/openafs-1.8.8.1.html

02/04/202230

Package List #2 – locally built EL8 kmods

https://www.caen.it/products/a3818/
https://www.openafs.org/release/openafs-1.8.8.1.html

305.el8 305.3.1.el8 310.el8 315.el8 326.el8 331.el8 338.el8 348.el8
0

5

10

15

20

25

30

35

40

45

50

55

60

65

21 21 21 21

45

54
56

62

41 41 41 41

17

8
6

0

Install
No

Results #2 – kmod repoclosures, do the test packages install with kernel

02/04/202231

This data along with the earlier charts can be used to focus in on a few specifics:
● 21 packages made the transition from 8.4 to 8.5 without any need for modification or rebuilding.
● When kmod relevant symbols change, they appear to stay with the new configuration

– kernel(napi_enable) and kernel(kmalloc_caches) for example change one time
● The 326.el8 kernel is where most of the kmod relevant symbols moved from “8.4 compatibility”

to “8.5 compatibility”
– kmod-usbip has the most missing symbols at this point – 12, all usb related
– Most packages complain about kernel(napi_enable) changing

● nvidia is largely bypassing the kABI and focusing on Modularity Streams.
● nvidia and OpenAFS are the only packages listed on the 338.el8 kernel
● The 331.el8 kernel has only two non-nvidia/OpenAFS packages listed (mlx4 and usbip)
● Largest impact kernels: 326.el8 (diff 1248 syms from 8.5) and 331.el8 (diff 393 syms from 8.5)
● Unique symbols consumed: 2112 (~10.5%)
● Changed symbols consumed: 288 (~1.4%)

Reviewing the data from the test kmods

02/04/202232

● Stable symbols consumed: 566 (~2.8%)
● Unchanged symbols consumed: 1258 (~6.2%)

The approach from nvidia is closest to what the upstream kernel recommends (without getting the
code into the tree). With their existing setup, they could start building against the Stream kernel
today without any impact on their existing users. They are doing the right masking in modules.yaml.
 Anyone know who we should talk to over there about getting that in place? Building against the
Stream kernel would guarantee their EL users a kmod on GA day and extend their reach into Stream.

The kABI users had really two Stream kernels of major interest – the 326.el8 and 331.el8 kernels. The
two most-consumed symbols by my test packages are kernel(kmalloc_caches) and
kernel(napi_enable). The network subsystem has the most-consumed external symbols, with the
usb subsystem coming in second.

I checked the RPMs that required a rebuild between the 305.el8, 326.el8, and 331.el8 kernels. I found
a few that required multiple rebuilds between 8.4 GA and 8.5 GA: kmod-ath5k (3), kmod-ib_qib (2),
kmod-iwlegacy (3), kmod-lustre-client (2), kmod-reiserfs (2), kmod-rtl8187 (3), kmod-usbip (3), kmod-
wireguard(3).

Most of the test kmods recompiled without any changes on the various kernels.

Conclusions - General

02/04/202233

Taking OpenAFS apart a bit further, on the public symbol list the only symbol to change is
kernel(kmalloc_caches). But as we’ve already noted, OpenAFS can get caught by things we can’t
clearly introspect. So the value in this data is unclear.

Taking the nvidia modules apart, they look to be using symbols that changed in the 326 kernel. The
major bits are around the DRM subsystem and again the kernel(kmalloc_caches) symbol.

Conclusions – OpenAFS and nvidia

02/04/202234

● Need a clear, well documented place for a tool to “listen” for new kernel package builds
– I’m hopeful, when this exists, it will be added to the KMOD SIG documentation or the build

system documentation.
– I believe this is tied up with the GitForge migrations and FedMsg plans.

● Running an automatic repoclosure against the new kernel will kick up obvious problems

Three modules had the “worst case” under my test list (of 62 modules) and required three rebuilds over the
time between 8.4 GA and 8.5 GA. This is a period of 175 days. Over that same period 288 symbols
(~0.02%) relevant to my test kmods changed vs the total of 6244 symbols (~31.5%) that changed between
RHEL 8.4 GA and RHEL 8.5 GA.

I’m deliberately not quantifying how much work is required to adjust to these changes. In some cases, a
recompile with the same code will “just work”, in others, development effort could be required. In the
examples here, none of the effort porting to the next Stream kernel is “Stream Only” because all the
relevant symbol changes appear within the RHEL 8.5 GA kernel and came from the upstream kernel
interfaces. If your module needs to run on a mainline kernel, you’re already doing the development work
required here.

Conclusions – Recommendations for module builders

02/04/202235

https://sigs.centos.org/kmods/

Work supported by the Fermi National Accelerator Laboratory, managed and
operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-
07CH11359 with the U.S. Department of Energy. The U.S. Government retains and
the publisher, by accepting the article for publication, acknowledges that the U.S.
Government retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow others to do so,
for U.S. Government purposes.

Notice of Production

02/04/202236

02/04/202237

Questions?

02/04/202238

	Slide 1
	Content Slide [19.5pt Bold]
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Comparison Slide [19.5pt Bold]
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

