
Repeatable process for building
secure containers

Jorge Morales
OpenShift Field Product Manager &
Developer advocate

Agenda
● Technology introduction
● OpenShift 3 architectural overview
● Security in Docker
● Security in OpenShift 3
● Build and deploy secure containers

OpenShift 3
Technology introduction

What are containers?
Where hypervisors provide a logical abstraction of a full system (hardware,
BIOS, OS), Containers provide an abstraction of the user space and share
the same OS, services, and hardware.

What are Linux Containers?
Software packaging concept that typically includes an application
and all of its runtime dependencies.

● Easy to deploy and portable across host systems
● Isolates applications on a host operating system

In RHEL, this is done through:

● Control Groups (cgroups)
● Kernel namespaces
● SELinux, sVirt

Docker
● Container packaging format
“ Docker allows you to package an application with all of its dependencies into a standardized unit
for software development. ”

● Docker engine is a set of tools to build and run containers (a
daemon runtime and cli)

● Registry stores and distributes container images

● Hub is “marketplace” for containers

Docker is easy!!!

Kubernetes
● leverages Google’s experience with Borg and Omega

● manages a fleet of Docker daemons

● provides coordination for components

● provides resiliency for containers

● provides high availability for containers

OpenShift 3
Architectural overview

PaaS

❖ You code the application, PaaS runs it for you
❖ Leverage the ease, scale and power of the Cloud

OpenShift3
● Rich Web Console, CLI & IDE interfaces

● Multi-User Collaboration (Projects and

Teams)

● Build Automation & Source-to-image

● Integration with Existing CI & Build Systems

● Deployment Automation & Regions / Zones

● OVS Container Networking

● Shared Storage Volumes

● Simplified Installation and Administration

Traditional Docker-file method automatically builds containers by setting the SCM location
into Openshift. This is a good non disruptive method for customer already using Docker

Images.

Building from Dockerfile

Source to Image (STI) is a next gen method allowing to automatically build and update containers by letting
Openshift builds and links your application code to your Docker image.

This is a flexible method that can easily be plugged into any existing software delivery process.

Building from application source

Source to Image (STI) is a next gen method allowing to automatically build and update containers
by letting Openshift build your application code as well as your Docker image.

Building from application source

Custom build allows to create complex process logic for non standard workflows.

Custom build

Deployments strategies allow you to define the deployment workflows and release cycle
adapted to your application.

Deploying your application

OpenShift 3
Security in Docker

Trust what you run

http://www.youtube.com/watch?v=QHJGoZpFeM8

Docker Content Trust: Notary
● Sign image by author (using private key) on Docker push
● Verify signature (using public key) on Docker pull

Provides:

● Protection Against Image Forgery
● Protection Against Replay Attacks
● Protection Against Key Compromise

SELinux in Docker
Volume mounts:

● -v /src:/dest:Z would give you a private label
● -v /src/dest:z will give you a shared label

$ docker run -it --rm -v /var/db:/var/db registry.access.redhat.com/rhel7 /bin/sh
sh-4.2# ls -Z /var/db/
-rw-r--r--. root root system_u:object_r:svirt_sandbox_file_t:s0 Makefile

$ docker run -it --rm -v /var/db:/var/db:z registry.access.redhat.com/rhel7 /bin/sh
ls -Z /var/db
-rw-r--r--. root root system_u:object_r:svirt_sandbox_file_t:s0 Makefile

$ docker run -it --rm -v /var/db:/var/db:Z registry.access.redhat.com/rhel7 /bin/sh
ls -Z /var/db
-rw-r--r--. root root system_u:object_r:svirt_sandbox_file_t:s0:c579,c909 Makefile

http://www.projectatomic.io/blog/2015/06/using-volumes-with-docker-can-cause-problems-with-selinux/
http://www.projectatomic.io/blog/2015/06/using-volumes-with-docker-can-cause-problems-with-selinux/

sVirt in Docker
Every container gets a different MCS label even if the
have the same type of SELinux enforcement

$ docker run -itd --name fedora fedora bash
$ docker run -itd --name rhel6 registry.access.redhat.com/rhel6 bash
$ docker run -itd --name rhel7 registry.access.redhat.com/rhel7 bash
$ ps -efZ | grep -v kernel| grep svirt
system_u:system_r:svirt_lxc_net_t:s0:c158,c387 root 16396 1215 0 16:08 pts/1 00:00:00 bash
system_u:system_r:svirt_lxc_net_t:s0:c398,c448 root 16476 1215 0 16:08 pts/3 00:00:00 bash
system_u:system_r:svirt_lxc_net_t:s0:c455,c1002 root 16536 1215 0 16:08 pts/4 00:00:00 bash

“If you have root in a container, you have root in
the whole box”

● Don’t give root in a container
● If you have to give root, give “looks-like-root”
● If that’s not enough, give root but build another

wall

Why don’t containers contain?
Everything in Linux is not namespaced.

Currently, Docker uses five namespaces to alter processes view of the

system:

● Process (pid)

● Network (net)

● Mount (mount)

● Hostname (uts)

● Shared Memory (ipc)

http://opensource.com/business/14/7/docker-security-selinux
http://opensource.com/business/14/7/docker-security-selinux

OpenShift 3
Security in OpenShift

Authorization policies
Authorization policies determine whether a user is allowed to perform
a given action within a project.

● Cluster policies

● Local policies

https://docs.openshift.org/latest/architecture/additional_concepts/authorization.html
https://docs.openshift.org/latest/architecture/additional_concepts/authorization.html#action

Security Context Contstraints
Security context constraints (SCC) that control the actions that a pod
can perform and what it has the ability to access.

They allow an administrator to control the following:

● Running of privileged containers.
● Capabilities a container can request to be added.
● Use of host directories as volumes.
● The SELinux context of the container.
● The user ID.
● The use of host namespaces and networking.

https://docs.openshift.org/latest/architecture/additional_concepts/authorization.html#security-context-constraints
https://docs.openshift.org/latest/architecture/core_concepts/pods_and_services.html#pods
https://docs.openshift.org/latest/admin_guide/manage_scc.html
https://docs.openshift.org/latest/install_config/install/prerequisites.html#security-warning

Secrets
Secrets provides a mechanism to hold sensitive information

● passwords
● OpenShift client config files
● dockercfg files
● private source repository credentials
● etc.

https://docs.openshift.org/latest/dev_guide/secrets.html
https://docs.openshift.org/latest/dev_guide/secrets.html

Caveats
● Drop privileges as quickly as possible
● Run your services as non-root whenever possible
● Treat root within a container as if it is root outside of the container
● Don't run random Docker images on your system.

OpenShift 3
Build and Deploy secure containers

Create standard base images
Add all your requirements into base images using an
appropriate hierarchy of layers

Install standard base images

Builder
Image

Build

Standards
Code SCM

Image
Stream

Base all work on standard base images

Standard
Image

Build

Code ContainerSCM

Update standard base images

Build

Standards
Code SCM

Image
Stream

Update images based on standard
base images

Standard
Image

Build Container

Image
Stream Redeployment

OpenShift 3
Q&A

