Speeding up DNF and RPM using Copy on Write

CentOS Dojo, FOSDEM, 2021
<table>
<thead>
<tr>
<th>Agenda</th>
<th>Present</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Context</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. DNF and RPM with Copy on Write</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Reuse Local Extents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Packed Object Repositories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Better Images</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. But Why?
USE THE CLOUD
THERE IS NO CLOUD
THERE IS A CLOUD
AND IT IS ON OUR COMPUTER
<table>
<thead>
<tr>
<th>Services running in containers</th>
<th>Per physical host software</th>
<th>Underneath everything is CentOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Container Runtime</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Log Aggregation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hardware Monitoring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Service Selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ...</td>
<td></td>
</tr>
</tbody>
</table>
Mutable, Managed Operating System

- (Fairly) minimal CentOS Server installation
- Periodic convergence using Chef
 - Install/Upgrade/Remove RPM packages
 - Write configuration files
 - (Re)start services
 - ...
 - ...
Contrast: Immutable Operating Systems?

- Multiple concurrent release processes
 - Immutable forces a small number of states, e.g. “stable” and “release candidate”
 - There’s no such thing as “stable”
 - Many small changes
- Minimise service downtime
 - Read only Operating Systems force “reboot” as a strategy
 - Services benefit from caches in RAM
- Consider CVE-2021-3156 “Sudo before 1.9.5p2 has a Heap-based Buffer Overflow, allowing privilege escalation to root via "sudoedit -s" and a command-line argument that ends with a single backslash character.”
 - Reboot the world?
 - dnf upgrade sudo
Using DNF in Production

Orchestrated using Chef while primary services are running

- I/O Contention!
- Deadlines!
2. DNF and RPM with Copy on Write

A 3,048 meter view of package installation and Copy on Write (CoW)
DNF & RPM, the 3,048 meter view

dnf install hello
curl https://yum/foo-1.rpm \
-o /var/cache/dnf/repo/foo-1.rpm

&&

rpm -i /var/cache/dnf/repo/foo-1.rpm
Traditional RPM installation
A note on duplication

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>Granularity</th>
<th>So what?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy Octets</td>
<td>$O(n)$</td>
<td>Any</td>
<td>Expensive</td>
</tr>
<tr>
<td>Symlink</td>
<td>$O(1)$</td>
<td>File</td>
<td>Weak Reference</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Changes propagate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shares mode/owner</td>
</tr>
<tr>
<td>Hardlink</td>
<td>$O(1)$</td>
<td>File</td>
<td>Same filesystem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Changes propagate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shares mode/owner</td>
</tr>
<tr>
<td>Reflink</td>
<td>$O(\log(n))$</td>
<td>FS Block size</td>
<td>Same filesystem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Filesystem support</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Page alignment</td>
</tr>
</tbody>
</table>
CoW RPM installation
DNF with Copy on Write

- Packages are decompressed during download
 - Can be parallelized
- Footer contains
 - MAGIC value to identify transcoded data
 - Calculation of original file digest(s) to verify downloads
 - Sorted table of content digest→offset
- Contents are reflinked: existing data is referenced
 - Content is aligned to page boundaries/padded
 - ioctl(dst, FICLONERANGE, &fcr)
 - Fall back to regular file copy, e.g. /boot
All of this exists today
Looking forwards
3. Reuse Local Extents
Reuse Local Extents
Reuse Local Extents

- keepcache=True
- Package Cache contains transcoded packages
- “digest addressable filesystem”
- Files from existing package can reused (relinked) into new package, and into final destination
- Deduplication
- Similar intent to delta rpms, less expensive
- Saves writes
- Still costs network bandwidth and CPU for decompression
4. Packed Object Repositories
What's in a repo?

https://yum/foo-1.rpm

https://yum/foo-2.rpm

https://yum/repoData/repomd.xml

https://yum/repoData/15c..1a2-primary.xml.gz

https://yum/repoData/1-sha256.index

https://yum/repoData/1-sha256.data

/cache/foo-2.rpm
Packed Objects Repositories

- Changes Organization from Package to File oriented
- Pack index + data per digest type
- Clients maintain copy of indexes which grow over time
- Two step download
 1. Get headers for packages
 2. Follow digests in headers to reuse local extents, get data via http(s)
- You only download and decompress what you’re missing
- Parallelize even on single packages
5. Use case: Better Images
RPM CoW + Local Extent Reuse + Packed Repositories

Produce Image

1. Build image in /var/images/${name}
2. Package as single, (large?) rpm
3. Upload to packed repository

Consume for Container images

1. Install RPM

Consume for Operating System Images

1. Install RPM in existing OS or ramdisk, then on first boot:
2. mv /* /old
 mv /old/var/images/${name}/* /
 mv /old/var/cache/dnf
 /var/cache/dnf
3. Continue booting
4. rm /old -r
Summary

● Today:
 ○ Time is proportional to sum(file sizes) + number of files
 ○ Churn on storage: reprovisioning ends up re-writing some GB each time

● Future
 ○ Time is proportional to delta of sum(file sizes) + number of files
 ○ Storage / distribution / download is delta based
 ○ Order of package operations / updates is not fixed. Contrast to sendstreams:
 ■ Sendstreams deltas only go from point A to B, exactly
 ■ Sendstreams are subvolume / filesystem not “package” level
 ○ Benefits to “image” and normal package installation/update flows
Status

1. DNF and RPM with Copy on Write
 ○ In production at Facebook
 ○ CentOS 8 version in Hyperscale SIG soon
 ○ Proposed for Fedora 34
 https://fedoraproject.org/wiki/Changes/RPMCoW
 ○ Refactoring code
 ○ Address package verification concerns

2. Reuse Local Extents + Packed Object Repositories
 ○ Next!
Let’s talk!

• Now: Q&A
• Later
 – malmond@fb.com
 – Freenode: malmond
 – https://fedoraproject.org/wiki/Changes/RPMCoW
 – Top level project:
 https://github.com/facebookincubator/dnf-plugin-cow/