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1. But Why?



USE THE CLOUD



THERE IS NO 
CLOUD

IT’S JUST SOMEONE ELSE’S COMPUTER



THERE IS A CLOUD
AND IT IS ON OUR COMPUTER



Services running in 
containers

What is on our computer?

Per physical host 
software

• Container Runtime
• Log Aggregation
• Hardware Monitoring
• Service Selection
• ...

Underneath 
everything is 
CentOS



Mutable, Managed Operating System

● (Fairly) minimal CentOS Server installation
● Periodic convergence using Chef

○ Install/Upgrade/Remove RPM packages
○ Write configuration files
○ (Re)start services
○ … 



Contrast: Immutable Operating Systems?
● Multiple concurrent release processes

○ Immutable forces a small number of states, e.g. “stable” and “release candidate”
○ There’s no such thing as “stable”
○ Many small changes

● Minimise service downtime
○ Read only Operating Systems force “reboot” as a strategy
○ Services benefit from caches in RAM

● Consider CVE-2021-3156 “Sudo before 1.9.5p2 has a Heap-based Buffer Overflow, 
allowing privilege escalation to root via "sudoedit -s" and a command-line argument that 
ends with a single backslash character.”

○ Reboot the world?
○ dnf upgrade sudo



Using DNF in Production

Orchestrated using Chef while primary services are running

● I/O Contention!
● Deadlines!



2. DNF and RPM with Copy on Write

A 3,048 meter view of package 
installation and Copy on Write (CoW)



DNF & RPM, the 3,048 meter view
dnf install hello

depsolve(intent, repos, 
rpmdb) Download Packages Install Packages

DNF

RPM



Download Packages Install Packages

DNF & RPM, the 1,524 meter view

Download 
Packages

Install 
PackagesCache FilesystemWeb Server

curl https://yum/foo-1.rpm \
     -o /var/cache/dnf/repo/foo-1.rpm

rpm -i /var/cache/dnf/repo/foo-1.rpm&&

Copying archive Decompression and Installation



/cache/foo-1.rpm

/path/foo

/b/bar

/b/baz

https://yum/foo-1.rpm

Traditional 
RPM 
installation



Cost Granularity So what?

Copy Octets O(n) Any Expensive

Symlink O(1) File
Weak Reference
Changes propagate
Shares mode/owner

Hardlink O(1) File
Same filesystem
Changes propagate
Shares mode/owner

Reflink O(log(n)) FS Block size
Same filesystem
Filesystem support
Page alignment

A note on duplication



/cache/foo-1.rpm

/path/foo

/b/bar

/b/baz

https://yum/foo-1.rpm

CoW RPM 
installation

Tr
an

sc
od

er



DNF with Copy on Write

● Packages are decompressed during download
○ Can be parallelized

● Footer contains
○ MAGIC value to identify transcoded data
○ Calculation of original file digest(s) to verify downloads
○ Sorted table of content digest→offset

● Contents are reflinked: existing data is referenced
○ Content is aligned to page boundaries/padded
○ ioctl(dst, FICLONERANGE, &fcr)
○ Fall back to regular file copy, e.g. /boot



⬅All of this 
exists today



Looking 
forwards ➡



3. Reuse Local Extents



/cache/foo-2.rpm

/path/foo

/b/bar

/b/baz

https://yum/foo-2.rpm

Reuse Local 
Extents

/cache/foo-1.rpm

Tr
an

sc
od

er



Reuse Local Extents

● keepcache=True
● Package Cache contains transcoded packages
● “digest addressable filesystem”
● Files from existing package can reused (reflinked) into new 

package, and into final destination
● Deduplication
● Similar intent to delta rpms, less expensive
● Saves writes
● Still costs network bandwidth and CPU for decompression



4. Packed Object Repositories



https://yum/foo-1.rpm

https://yum/foo-2.rpm

https://yum/repodata/repomd.xml

https://yum/repodata/15c..1a2-primary.xml.gz

https://yum/repodata/1-sha256.index

https://yum/repodata/1-sha256.data

(is much smaller than this)
[(digest, compressed_size),...]

What’s in a repo?

/cache/foo-2.rpm



Packed Objects Repositories

● Changes Organization from Package to File oriented
● Pack index + data per digest type
● Clients maintain copy of indexes which grow over time
● Two step download

1. Get headers for packages
2. Follow digests in headers to reuse local extents, get data via 

http(s)
● You only download and decompress what you’re missing
● Parallelize even on single packages



5. Use case: Better Images



Produce Image

1. Build image in 
/var/images/${name}

2. Package as single, (large?) rpm
3. Upload to packed repository

RPM CoW + Local Extent Reuse + Packed Repositories

Consume  for 
Container images

1. Install RPM

Consume for Operating 
System Images

1. Install RPM in existing OS or ramdisk, 
then on first boot:

2. mv /* /old

mv /old/var/images/${name}/* /

mv /old/var/cache/dnf \ 
/var/cache/dnf

3. Continue booting
4. rm /old -r



Summary
● Today:

○ Time is proportional to sum(file sizes) + number of files
○ Churn on storage: reprovisioning ends up re-writing some GB each time

● Future
○ Time is proportional to delta of sum(file sizes) + number of files
○ Storage / distribution / download is delta based
○ Order of package operations / updates is not fixed. Contrast to 

sendstreams:
■ Sendstreams deltas only go from point A to B, exactly
■ Sendstreams are subvolume / filesystem not “package” level

○ Benefits to “image” and normal package installation/update flows



Status

1. DNF and RPM with Copy on Write
○ In production at Facebook
○ CentOS 8 version in Hyperscale SIG soon
○ Proposed for Fedora 34 

https://fedoraproject.org/wiki/Changes/RPMCoW
○ Refactoring code
○ Address package verification concerns

2. Reuse Local Extents + Packed Object Repositories
○ Next!



Let’s talk!

• Now: Q&A
• Later

﹘ malmond@fb.com
﹘ Freenode: malmond
﹘ https://fedoraproject.org/wiki/Changes/RPMCoW
﹘ Top level project: 

https://github.com/facebookincubator/dnf-plugin-cow/ 


