
Matthew Almond Production Engineer Operating Systems

Speeding up DNF and RPM using
Copy on Write
CentOS Dojo, FOSDEM, 2021

1. Context
2. DNF and RPM with Copy on Write
3. Reuse Local Extents
4. Packed Object Repositories
5. Better Images

Agenda

P
re

sn
et

Fu
tu

re

1. But Why?

USE THE CLOUD

THERE IS NO
CLOUD

IT’S JUST SOMEONE ELSE’S COMPUTER

THERE IS A CLOUD
AND IT IS ON OUR COMPUTER

Services running in
containers

What is on our computer?

Per physical host
software

• Container Runtime
• Log Aggregation
• Hardware Monitoring
• Service Selection
• ...

Underneath
everything is
CentOS

Mutable, Managed Operating System

● (Fairly) minimal CentOS Server installation
● Periodic convergence using Chef

○ Install/Upgrade/Remove RPM packages
○ Write configuration files
○ (Re)start services
○ …

Contrast: Immutable Operating Systems?
● Multiple concurrent release processes

○ Immutable forces a small number of states, e.g. “stable” and “release candidate”
○ There’s no such thing as “stable”
○ Many small changes

● Minimise service downtime
○ Read only Operating Systems force “reboot” as a strategy
○ Services benefit from caches in RAM

● Consider CVE-2021-3156 “Sudo before 1.9.5p2 has a Heap-based Buffer Overflow,
allowing privilege escalation to root via "sudoedit -s" and a command-line argument that
ends with a single backslash character.”

○ Reboot the world?
○ dnf upgrade sudo

Using DNF in Production

Orchestrated using Chef while primary services are running

● I/O Contention!
● Deadlines!

2. DNF and RPM with Copy on Write

A 3,048 meter view of package
installation and Copy on Write (CoW)

DNF & RPM, the 3,048 meter view
dnf install hello

depsolve(intent, repos,
rpmdb) Download Packages Install Packages

DNF

RPM

Download Packages Install Packages

DNF & RPM, the 1,524 meter view

Download
Packages

Install
PackagesCache FilesystemWeb Server

curl https://yum/foo-1.rpm \
 -o /var/cache/dnf/repo/foo-1.rpm

rpm -i /var/cache/dnf/repo/foo-1.rpm&&

Copying archive Decompression and Installation

/cache/foo-1.rpm

/path/foo

/b/bar

/b/baz

https://yum/foo-1.rpm

Traditional
RPM
installation

Cost Granularity So what?

Copy Octets O(n) Any Expensive

Symlink O(1) File
Weak Reference
Changes propagate
Shares mode/owner

Hardlink O(1) File
Same filesystem
Changes propagate
Shares mode/owner

Reflink O(log(n)) FS Block size
Same filesystem
Filesystem support
Page alignment

A note on duplication

/cache/foo-1.rpm

/path/foo

/b/bar

/b/baz

https://yum/foo-1.rpm

CoW RPM
installation

Tr
an

sc
od

er

DNF with Copy on Write

● Packages are decompressed during download
○ Can be parallelized

● Footer contains
○ MAGIC value to identify transcoded data
○ Calculation of original file digest(s) to verify downloads
○ Sorted table of content digest→offset

● Contents are reflinked: existing data is referenced
○ Content is aligned to page boundaries/padded
○ ioctl(dst, FICLONERANGE, &fcr)
○ Fall back to regular file copy, e.g. /boot

⬅All of this
exists today

Looking
forwards ➡

3. Reuse Local Extents

/cache/foo-2.rpm

/path/foo

/b/bar

/b/baz

https://yum/foo-2.rpm

Reuse Local
Extents

/cache/foo-1.rpm

Tr
an

sc
od

er

Reuse Local Extents

● keepcache=True
● Package Cache contains transcoded packages
● “digest addressable filesystem”
● Files from existing package can reused (reflinked) into new

package, and into final destination
● Deduplication
● Similar intent to delta rpms, less expensive
● Saves writes
● Still costs network bandwidth and CPU for decompression

4. Packed Object Repositories

https://yum/foo-1.rpm

https://yum/foo-2.rpm

https://yum/repodata/repomd.xml

https://yum/repodata/15c..1a2-primary.xml.gz

https://yum/repodata/1-sha256.index

https://yum/repodata/1-sha256.data

(is much smaller than this)
[(digest, compressed_size),...]

What’s in a repo?

/cache/foo-2.rpm

Packed Objects Repositories

● Changes Organization from Package to File oriented
● Pack index + data per digest type
● Clients maintain copy of indexes which grow over time
● Two step download

1. Get headers for packages
2. Follow digests in headers to reuse local extents, get data via

http(s)
● You only download and decompress what you’re missing
● Parallelize even on single packages

5. Use case: Better Images

Produce Image

1. Build image in
/var/images/${name}

2. Package as single, (large?) rpm
3. Upload to packed repository

RPM CoW + Local Extent Reuse + Packed Repositories

Consume for
Container images

1. Install RPM

Consume for Operating
System Images

1. Install RPM in existing OS or ramdisk,
then on first boot:

2. mv /* /old

mv /old/var/images/${name}/* /

mv /old/var/cache/dnf \
/var/cache/dnf

3. Continue booting
4. rm /old -r

Summary
● Today:

○ Time is proportional to sum(file sizes) + number of files
○ Churn on storage: reprovisioning ends up re-writing some GB each time

● Future
○ Time is proportional to delta of sum(file sizes) + number of files
○ Storage / distribution / download is delta based
○ Order of package operations / updates is not fixed. Contrast to

sendstreams:
■ Sendstreams deltas only go from point A to B, exactly
■ Sendstreams are subvolume / filesystem not “package” level

○ Benefits to “image” and normal package installation/update flows

Status

1. DNF and RPM with Copy on Write
○ In production at Facebook
○ CentOS 8 version in Hyperscale SIG soon
○ Proposed for Fedora 34

https://fedoraproject.org/wiki/Changes/RPMCoW
○ Refactoring code
○ Address package verification concerns

2. Reuse Local Extents + Packed Object Repositories
○ Next!

Let’s talk!

• Now: Q&A
• Later

﹘ malmond@fb.com
﹘ Freenode: malmond
﹘ https://fedoraproject.org/wiki/Changes/RPMCoW
﹘ Top level project:

https://github.com/facebookincubator/dnf-plugin-cow/

