
Welcome to the Waitless World

Distributed Deep
Learning

CentOS Dojo at Oak Ridge National Labs

Bryant Nelson

April 16, 2019

© 2019 IBM Corporation

Welcome to the Waitless World

Outline

1. Survey of Distributed Deep Learning
A. Problem Statement
B. Basic Technology

o Hyper-Parameter & Architecture Search Parallelism
o Model Parallelism

o Data Parallelism

2. Data Parallel Distributed Deep Learning
A. Description
B. Tools

o Tensorflow Distributed Strategy
o Horovod

o IBM PowerAI DDL

C. PowerAI DDL Example
D. Technical Considerations

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 2 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

SURVEY OF DISTRIBUTED DEEP
LEARNING

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 3 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

• Deep Neural Networks (DNNs) first became relevant with increases in
compute power driven largely by the use of GPUs for compute.

• Datasets have increased in size. DNNs have increased in complexity.
Both factors have led to increases in memory consumption and
computation required to train models.

• With only 4-8 GPUs in a single machine, it has become necessary to
distribute training across multiple machines.

Survey of Distributed Deep Learning:
Problem Statement

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 4 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

Survey of Distributed Deep Learning
Basic Technology

Distributed Deep Learning / April 16, 2019 / Centos Dojo

[Ben-Nun et al. 2018] “Fig. 3a shows a summary of the machine architectures used in research papers

over the years. We see a clear trend towards GPUs, which dominate the publications beginning from

2013. However, even accelerated nodes are not sufficient for the large computational workload. Fig. 3b

illustrates the quickly growing multi-node parallelism in those works”

1 1A 1B 2 2A 2B 2C 2D

Slide 5 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

• Common distribution methodologies:

– Hyper-parameter search parallelism

o Different models (architectures/hyperparameters) run in parallel with same data

– Model Parallelism

o Model partitioned across multiple machines

– Data Parallelism

o Multiple replicas of the model work on different subsets of data

Survey of Distributed Deep Learning
Basic Technology

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 6 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

Basic Technology:
Hyper-Parameter & Architecture Search Parallelism

• Different models (different
architectures/hyperparameters) run in parallel
with same data

• Embarrassingly parallel, though combinations
grow exponentially

• Methods of Searching for good values:
– Random search

– Grid search: Conduct hyperparameter search at
logarithmic scale

– Probe values known to work well; make educated
guesses

– Spectral methods like Compressed Sensing [Hazan et
al. 2018]

– Hyperband [Li et al. 2017]

• Hyperparameter tuning with Watson Machine
Learning Accelerator

• IBM NeuNets automatic network creation.

Distributed Deep Learning / April 16, 2019 / Centos Dojo

[Bergstra et al. 2012]

1 1A 1B 2 2A 2B 2C 2D

Slide 7 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

Basic Technology:
Model Parallelism - Network Parallelism

• Model Parallelism (aka Network Parallelism)

– Models are partitioned across multiple devices.

– Example: DistBelief [Dean et al. 2012]

– Parallelism within network layers

o divide neurons of a fully connected layer onto
separate devices

o divide C, H, or W dimensions of a CNN layer
onto separate devices

o copy input minibatch to all devices

o compute different parts on different devices

– conserves memory by not putting full network
in one place, but adds a communication cost –
eg. fully connected layers require all-to-all
communication of outputs to next layer

• Not used that much nowadays

Distributed Deep Learning / April 16, 2019 / Centos Dojo

[Bergstra et al. 2012]

1 1A 1B 2 2A 2B 2C 2D

Slide 8 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

Basic Technology:
Model Parallelism - Layer Pipelining

• Separate NN layers onto separate
devices
– advantages

o avoids need to store all parameters on all
devices (in contrast to network
parallelism)

o fixed number of communication points
between nodes (at layer boundaries)

o weights can be cached since devices
always compute the same layers

– disadvantages
o inputs have to arrive at a specific rate in

order to fully utilize the system
o latency proportional to the number of

devices is incurred

• Google’s GPipe [Huang 2019]

Distributed Deep Learning / April 16, 2019 / Centos Dojo

[Bergstra et al. 2012]

1 1A 1B 2 2A 2B 2C 2D

Slide 9 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

Basic Technology:
Data Parallelism

• distribute work by dividing samples of a
minibatch across multiple devices

• After each minibatch average the
gradients on each device to obtain the
gradient for the whole minibatch

• all parameters need to be accessible on
all devices

• works for most standard layers:

– activation / convolution / fully connected /
pooling

Distributed Deep Learning / April 16, 2019 / Centos Dojo

[Bergstra et al. 2012]

1 1A 1B 2 2A 2B 2C 2D

Slide 10 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

DATA PARALLEL DISTRIBUTED
DEEP LEARNING

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 11 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

• Synchronous All-to-All Data-Parallel Distributed GPU Deep Learning

• A process is created for each GPU in the cluster

• Each process contains a complete copy of the model

• Mini-batch is spread across all of the processes

– Each process uses different input data

• After each iteration, all of the processes sync and average together
their gradients, and those averages are used to update the local
weights.

• Models on each GPU should always be identical.

Data Parallel Distributed Deep Learning:
Description

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 12 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

Data Parallel Distributed Deep Learning:
Tools

• Communication Libraries

– MPI

– NCCL

– IBM PowerAI DDL

• Integrations / Frameworks

– TensorFlow Distribution
Strategies

– Horovod

– IBM PowerAI DDL

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 13 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

• The following tools are libraries, which provide the communication
functions necessary to perform distributed training. Primarily allReduce
and broadcast functions.
– MPI

o Classic tool for distributed computing.

o Still commonly used for distributed deep learning.

– NCCL
o Nvidia’s gpu-to-gpu communication library.

o Since NCCL2, between-node communication is supported.

– IBM PowerAI DDL
o Provides a topology-aware allReduce.

o Capable of optimally dividing communication across hierarchies of fabrics.

o Utilizes different communication protocols at different hierarchies.

Data Parallel Distributed Deep Learning:
Tools – Communication Libraries

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 14 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

• The following tools are libraries, which provide integrations into deep
learning frameworks to enable distributed training using common
communication libraries.

– TensorFlow Distribution Strategies

o Native Tensorflow distribution methods.

– Horovod [Sergeev et al. 2018]

o Provides integration libraries into common frameworks which enable distributed
training with common communication libraries, including

– IBM PowerAI DDL

o Provides integrations into common frameworks, including a Tensorflow operator
that integrates PowerAI DDL with Tensorflow.

Data Parallel Distributed Deep Learning:
Tools – Integrations / Frameworks

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 15 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

• PowerAI DDL provides:
– C and Python libraries that provide communication functions.

o The library utilizes the MPI and NCCL libraries

– Framework integrations
o Provides a custom operator for TensorFlow. To use in Tensorflow, only need to ‘import ddl’.

o DDL integration is built into PowerAI’s version of Caffe and PyTorch

– A tool for launching jobs across a cluster called ddlrun, simplifying the launching of distributed jobs.
o e.g. ddlrun -H server1,server2,server3,server4 python train.py

• DDL’s allReduce uses knowledge of the cluster layout to perform reductions between nodes in a
certain order
– DDL attempts to perform reductions between nodes in the order that will cause the lowest

communication overhead.

– It takes into account the fact that not all nodes are connected with the same interface

– DDL performs best compared to other allreduce libraries when used in a cluster with a non-flat topology.

• Almost linear scaling for 64 machines with 4 GPUs each for ResNet-50. Training time took 50 mins
for 90 epochs with a batch of 32 per GPU

Data Parallel Distributed Deep Learning:
IBM PowerAI DDL [Cho et al. 2016]

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 16 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

Steps to distribute the training of a tf.keras model:

1. Import the ddl library.

2. Split the training data.

3. Modify hyperparameters.

4. Add callbacks.

We will go through the changes necessary to use DDL to distribute the
training of an mnist model in tf.keras.

Original script: https://github.com/keras-
team/keras/blob/4f2e65c385d60fa87bb143c6c506cbe428895f44/exampl
es/mnist_cnn.py

Data Parallel Distributed Deep Learning:
PowerAI DDL Example

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 17 of 34

https://github.com/keras-team/keras/blob/4f2e65c385d60fa87bb143c6c506cbe428895f44/examples/mnist_cnn.py

© 2019 IBM Corporation

Welcome to the Waitless World

1. Import the ddl library.

This is the only necessary step to enable distributed training with DDL.

Data Parallel Distributed Deep Learning:
PowerAI DDL Example

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 18 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

2. Split the training data.

• If training works by iterating over all of the data, each process should
only iterate over equal sections of the data.

• If training works by grabbing random data, modifications may not be
necessary, although it should be verified that a different seed is being
used for each process

Data Parallel Distributed Deep Learning:
PowerAI DDL Example

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 19 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

2. Split the training data.

Data Parallel Distributed Deep Learning:
PowerAI DDL Example

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 20 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

3. Modify hyperparameters.

• In this example the only hyperparameter we change is the learning
rate.

– We scale the learning rate by the total number of “learners” to offset the
effect of the larger global batch size.

Data Parallel Distributed Deep Learning:
PowerAI DDL Example

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 21 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

4. Add callbacks.

• DDL provides two tf.keras callbacks.

– ddl.DDLCallback() is responsible for synchronizing keras metrics

o Should always be the first callback in the callbacks list.

– ddl.DDLGlobalVariablesCallback() is responsible for initializing global
variables to the same values across all learners

o Should always be the last callback in the callbacks list.

Data Parallel Distributed Deep Learning:
PowerAI DDL Example

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 22 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

• Execution

• DDL provides a utility called DDLRUN which is used to launch the
learning job on any number of nodes/gpus.

Data Parallel Distributed Deep Learning:
PowerAI DDL Example

Distributed Deep Learning / April 16, 2019 / Centos Dojo

(demo) [bnelson@dlw12 ~]$ ddlrun -H dlw03 python \
~/anaconda3/envs/demo/tf_cnn_benchmarks/tf_cnn_benchmarks.py --variable_update=ddl \
--model=resnet50 --num_gpus=1 --batch_size=32
...
--
total images/sec: 1248.06
--

(demo) [bnelson@dlw12 ~]$ ddlrun -H dlw04,dlw05,dlw06,dlw07,dlw08,dlw09,dlw10,dlw11,dlw12,dlw13 \
python ~/anaconda3/envs/demo/tf_cnn_benchmarks/tf_cnn_benchmarks.py --variable_update=ddl \
--model=resnet50 --num_gpus=1 --batch_size=32
...
--
total images/sec: 12043.78
--

1 1A 1B 2 2A 2B 2C 2D

Slide 23 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

• Batch Size

• Learning Rate

• Batch Normalization

• On-The-Fly Validation

• Data Pipelining

Data Parallel Distributed Deep Learning:
Technical Considerations

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 24 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

• The accuracy of a model is often sensitive to changes in the batch
size.

• In data parallel distributed training the effective batch size is equal to
the local batch size * number of learners.

Data Parallel Distributed Deep Learning:
Technical Considerations – Batch Size

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 25 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

Local

Batch N

Data Parallel Distributed Deep Learning:
Technical Considerations – Batch Size

Distributed Deep Learning / April 16, 2019 / Centos Dojo

GPU 1

GPU 2

GPU N

…

Dataset

Local

Batch 1

Local

Batch 2

1 1A 1B 2 2A 2B 2C 2D

Slide 26 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

Local

Batch N

Data Parallel Distributed Deep Learning:
Technical Considerations – Batch Size

Distributed Deep Learning / April 16, 2019 / Centos Dojo

GPU 1

GPU 2

GPU N

…

Dataset

Local

Batch 1

Local

Batch 2

Effective

Batch

1 1A 1B 2 2A 2B 2C 2D

Slide 27 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

• The accuracy of a model is often sensitive to changes in the batch
size.

• In data parallel distributed training the effective batch size is equal to
the local batch size * number of learners.

• With a large number of learners the batch size can quickly become
large enough to affect accuracy convergence.

• It is possible to reduce the batch size per learner (at least to one input
per batch) but there is a performance trade-off with under-utilized
GPUs.

Data Parallel Distributed Deep Learning:
Technical Considerations – Batch Size

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 28 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

• The learning rate can be used to offset the negative impact of a larger
effective batch size.

• Scaling the learning rate up by a factor of the number of GPUs speeds
up learning, similar to the way that a smaller mini batch size speeds up
learning.

• At some point a larger learning rate negatively impacts learning
convergence.

Data Parallel Distributed Deep Learning:
Technical Considerations – Learning Rate

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 29 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

• Data parallel distributed training does not work for batch normalization

– Batch norm operates on multiple samples(the entire global batch) at the
same time.

o The overhead of fully synchronizing the mean and variance for the global
minibatch quickly becomes unfeasible.

– Alternative 1:

o Do BN on small subsets (eg. The local minibatch) so these subsets can be
normalized locally which increases scaling

o This is the default behavior in most frameworks.

– Alternative 2:

o Instead of BN, use alternate normalization techniques such as weight
normalization

Data Parallel Distributed Deep Learning:
Technical Considerations – Batch Normalization

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 30 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

Data Parallel Distributed Deep Learning:
Technical Considerations – On-The-Fly Validation

• Most frameworks support some method
of on-the-fly validation.

• If the validation is not also distributed, it
will quickly bottleneck the training.

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 31 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

• On-the-fly data processing can bottleneck distributed training.

• If the pre-processing of the input data was tuned to use the total
available CPU processing when training on a single GPU, and that
training is distributed to 6 GPUs in the box, then the GPUs will spend
time waiting on the CPUs to finish the pre-processing.

Data Parallel Distributed Deep Learning:
Technical Considerations – Data Pipelining

Distributed Deep Learning / April 16, 2019 / Centos Dojo

1 1A 1B 2 2A 2B 2C 2D

Slide 32 of 34

© 2019 IBM Corporation

Welcome to the Waitless World

• [Ben-Nun et al. 2018] Tal Ben-Nun and Torsten Hoefler. 2018. Demystifying Parallel and Distributed
Deep Learning: An In-Depth Concurrency Analysis. arXiv:1802.09941v2
https://arxiv.org/pdf/1802.09941.pdf.

• [Bergstra et al. 2012] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-
Parameter Optimization. In Journal of Machine Learning Research 13 (2012) 281-305.

• [Hazan et al. 2018] Elad Hazan, Adam Klivans, and Yang Yuan. 2018. Hyperparameter optimization:
a spectral approach. In International Conference on Learning Representations (ICLR).
https://arxiv.org/abs/1706.00764.

• [Li et al. 2017] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter optimization. International
Conference onLearning Representations, 2017.

• [Dean et al. 2012] Dean, Jeffrey, Gregory S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc
V. Le, Mark Z. Mao, Marc'Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker, Ke Yang and Andrew
Y. Ng. Large Scale Distributed Deep Networks. In NIPS 2012

• [Cho et al. 2017] M. Cho, U. Finkler, S. Kumar, D. Kung, V. Saxena, and D. Sreedhar, “PowerAI
DDL”, arXiv preprint arXiv:1708.02188, 2017 https://arxiv.org/abs/1708.02188

• [Huang 2019] Yanping Huang, “Introducing GPipe, an Open Source Library for Efficiently Training
Large-scale Neural Network Models”, March 4, 2019 https://ai.googleblog.com/2019/03/introducing-
gpipe-open-source-library.html

• [Sergeev et al. 2018] Alexander Sergeev and Mike Del Balso, “Horovod: fast and easy distributed
deep learning in TensorFlow”, arXiv:1802.05799, 2018 http://arxiv.org/abs/1802.05799

• https://developer.ibm.com/linuxonpower/2018/09/19/distribute-tensorflow-keras-training-ddl/

References

Distributed Deep Learning / April 16, 2019 / Centos Dojo Slide 33 of 34

https://arxiv.org/pdf/1802.09941.pdf
https://arxiv.org/abs/1706.00764
https://arxiv.org/abs/1708.02188
https://ai.googleblog.com/2019/03/introducing-gpipe-open-source-library.html
http://arxiv.org/abs/1802.05799
https://developer.ibm.com/linuxonpower/2018/09/19/distribute-tensorflow-keras-training-ddl/

© 2019 IBM Corporation

Welcome to the Waitless World

Thank You

Bryant Nelson

—

bryant.nelson@ibm.com

http://www.ibm.com

Distributed Deep Learning / April 16, 2019 / Centos Dojo Slide 34 of 34

