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• Deep Neural Networks (DNNs) first became relevant with increases in 
compute power driven largely by the use of GPUs for compute.

• Datasets have increased in size. DNNs have increased in complexity.  
Both factors have led to increases in memory consumption and 
computation required to train models.

• With only 4-8 GPUs in a single machine, it has become necessary to 
distribute training across multiple machines.

Survey of Distributed Deep Learning:
Problem Statement
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Survey of Distributed Deep Learning
Basic Technology
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[Ben-Nun et al. 2018] “Fig. 3a shows a summary of the machine architectures used in research papers 

over the years. We see a clear trend towards GPUs, which dominate the publications beginning from 

2013. However, even accelerated nodes are not sufficient for the large computational workload. Fig. 3b 

illustrates the quickly growing multi-node parallelism in those works”
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• Common distribution methodologies:

– Hyper-parameter search parallelism

o Different models (architectures/hyperparameters) run in parallel with same data

– Model Parallelism

o Model partitioned across multiple machines

– Data Parallelism

o Multiple replicas of the model work on different subsets of data

Survey of Distributed Deep Learning
Basic Technology
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Basic Technology:
Hyper-Parameter & Architecture Search Parallelism

• Different models (different 
architectures/hyperparameters) run in parallel 
with same data

• Embarrassingly parallel, though combinations 
grow exponentially

• Methods of Searching for good values:
– Random search

– Grid search: Conduct hyperparameter search at 
logarithmic scale

– Probe values known to work well; make educated 
guesses

– Spectral methods like Compressed Sensing [Hazan et 
al. 2018]

– Hyperband [Li et al. 2017]

• Hyperparameter tuning with Watson Machine 
Learning Accelerator

• IBM NeuNets automatic network creation.
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1 1A 1B 2 2A 2B 2C 2D

Slide 7 of 34



© 2019 IBM Corporation

Welcome to the Waitless World

Basic Technology:
Model Parallelism - Network Parallelism

• Model Parallelism (aka Network Parallelism)

– Models are partitioned across multiple devices.

– Example: DistBelief [Dean et al. 2012]

– Parallelism within network layers

o divide neurons of a fully connected layer onto 
separate devices

o divide C, H, or W dimensions of a CNN layer 
onto separate devices

o copy input minibatch to all devices

o compute different parts on different devices

– conserves memory by not putting full network 
in one place, but adds a communication cost –
eg. fully connected layers require all-to-all 
communication of outputs to next layer

• Not used that much nowadays
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1 1A 1B 2 2A 2B 2C 2D

Slide 8 of 34



© 2019 IBM Corporation

Welcome to the Waitless World

Basic Technology:
Model Parallelism - Layer Pipelining

• Separate NN layers onto separate 
devices
– advantages

o avoids need to store all parameters on all 
devices (in contrast to network 
parallelism)

o fixed number of communication points 
between nodes (at layer boundaries)

o weights can be cached since devices 
always compute the same layers

– disadvantages
o inputs have to arrive at a specific rate in 

order to fully utilize the system
o latency proportional to the number of 

devices is incurred

• Google’s GPipe [Huang 2019] 
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Basic Technology:
Data Parallelism

• distribute work by dividing samples of a 
minibatch across multiple devices

• After each minibatch average the 
gradients on each device to obtain the 
gradient for the whole minibatch

• all parameters need to be accessible on 
all devices

• works for most standard layers:

– activation / convolution / fully connected / 
pooling
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DATA PARALLEL DISTRIBUTED 
DEEP LEARNING
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• Synchronous All-to-All Data-Parallel Distributed GPU Deep Learning

• A process is created for each GPU in the cluster

• Each process contains a complete copy of the model

• Mini-batch is spread across all of the processes

– Each process uses different input data

• After each iteration, all of the processes sync and average together 
their gradients, and those averages are used to update the local 
weights.

• Models on each GPU should always be identical.

Data Parallel Distributed Deep Learning:
Description
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Data Parallel Distributed Deep Learning:
Tools

• Communication Libraries

– MPI

– NCCL

– IBM PowerAI DDL

• Integrations / Frameworks

– TensorFlow Distribution 
Strategies

– Horovod

– IBM PowerAI DDL
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• The following tools are libraries, which provide the communication 
functions necessary to perform distributed training. Primarily allReduce
and broadcast functions.
– MPI

o Classic tool for distributed computing. 

o Still commonly  used for distributed deep learning.

– NCCL
o Nvidia’s gpu-to-gpu communication library.

o Since NCCL2, between-node communication is supported.

– IBM PowerAI DDL
o Provides a topology-aware allReduce. 

o Capable of optimally dividing communication across hierarchies of fabrics.

o Utilizes different communication protocols at different hierarchies.

Data Parallel Distributed Deep Learning:
Tools – Communication Libraries
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• The following tools are libraries, which provide integrations into deep 
learning frameworks to enable distributed training using common 
communication libraries. 

– TensorFlow Distribution Strategies

o Native Tensorflow distribution methods.

– Horovod [Sergeev et al. 2018] 

o Provides integration libraries into common frameworks which enable distributed 
training with common communication libraries, including 

– IBM PowerAI DDL

o Provides integrations into common frameworks, including a Tensorflow operator 
that integrates PowerAI DDL with Tensorflow.

Data Parallel Distributed Deep Learning:
Tools – Integrations / Frameworks
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• PowerAI DDL provides:
– C and Python libraries that provide communication functions.

o The library utilizes the MPI and NCCL libraries

– Framework integrations
o Provides a custom operator for TensorFlow. To use in Tensorflow, only need to ‘import ddl’.

o DDL integration is built into PowerAI’s version of Caffe and PyTorch

– A tool for launching jobs across a cluster called ddlrun, simplifying the launching of distributed jobs.
o e.g. ddlrun -H server1,server2,server3,server4 python train.py

• DDL’s allReduce uses knowledge of the cluster layout to perform reductions between nodes in a 
certain order
– DDL attempts to perform reductions between nodes in the order that will cause the lowest 

communication overhead.

– It takes into account the fact that not all nodes are connected with the same interface

– DDL performs best compared to other allreduce libraries when used in a cluster with a non-flat topology.

• Almost linear scaling for 64 machines with 4 GPUs each for ResNet-50. Training time took 50 mins 
for 90 epochs with a batch of 32 per GPU

Data Parallel Distributed Deep Learning:
IBM PowerAI DDL [Cho et al. 2016]
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Steps to distribute the training of a tf.keras model:

1. Import the ddl library.

2. Split the training data.

3. Modify hyperparameters.

4. Add callbacks.

We will go through the changes necessary to use DDL to distribute the 
training of an mnist model in tf.keras.

Original script: https://github.com/keras-
team/keras/blob/4f2e65c385d60fa87bb143c6c506cbe428895f44/exampl
es/mnist_cnn.py

Data Parallel Distributed Deep Learning:
PowerAI DDL Example
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1. Import the ddl library.

This is the only necessary step to enable distributed training with DDL.

Data Parallel Distributed Deep Learning:
PowerAI DDL Example
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2. Split the training data.

• If training works by iterating over all of the data, each process should 
only iterate over equal sections of the data.

• If training works by grabbing random data, modifications may not be 
necessary, although it should be verified that a different seed is being 
used for each process

Data Parallel Distributed Deep Learning:
PowerAI DDL Example
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2. Split the training data.

Data Parallel Distributed Deep Learning:
PowerAI DDL Example
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3. Modify hyperparameters.

• In this example the only hyperparameter we change is the learning 
rate.

– We scale the learning rate by the total number of “learners” to offset the 
effect of the larger global batch size.

Data Parallel Distributed Deep Learning:
PowerAI DDL Example
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4. Add callbacks.

• DDL provides two tf.keras callbacks.

– ddl.DDLCallback() is responsible for synchronizing keras metrics

o Should always be the first callback in the callbacks list.

– ddl.DDLGlobalVariablesCallback() is responsible for initializing global 
variables to the same values across all learners

o Should always be the last callback in the callbacks list.

Data Parallel Distributed Deep Learning:
PowerAI DDL Example
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• Execution

• DDL provides a utility called DDLRUN which is used to launch the 
learning job on any number of nodes/gpus.

Data Parallel Distributed Deep Learning:
PowerAI DDL Example
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(demo) [bnelson@dlw12 ~]$ ddlrun -H dlw03  python \
~/anaconda3/envs/demo/tf_cnn_benchmarks/tf_cnn_benchmarks.py --variable_update=ddl \
--model=resnet50 --num_gpus=1 --batch_size=32
...
----------------------------------------------------------------
total images/sec: 1248.06
----------------------------------------------------------------

(demo) [bnelson@dlw12 ~]$ ddlrun -H dlw04,dlw05,dlw06,dlw07,dlw08,dlw09,dlw10,dlw11,dlw12,dlw13 \
python ~/anaconda3/envs/demo/tf_cnn_benchmarks/tf_cnn_benchmarks.py --variable_update=ddl \
--model=resnet50 --num_gpus=1 --batch_size=32
...
----------------------------------------------------------------
total images/sec: 12043.78
----------------------------------------------------------------

1 1A 1B 2 2A 2B 2C 2D

Slide 23 of 34



© 2019 IBM Corporation

Welcome to the Waitless World

• Batch Size

• Learning Rate

• Batch Normalization

• On-The-Fly Validation

• Data Pipelining

Data Parallel Distributed Deep Learning:
Technical Considerations
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• The accuracy of a model is often sensitive to changes in the batch 
size.

• In data parallel distributed training the effective batch size is equal to 
the local batch size * number of learners.

Data Parallel Distributed Deep Learning:
Technical Considerations – Batch Size
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Local

Batch N

Data Parallel Distributed Deep Learning:
Technical Considerations – Batch Size
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Local

Batch N

Data Parallel Distributed Deep Learning:
Technical Considerations – Batch Size
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• The accuracy of a model is often sensitive to changes in the batch 
size.

• In data parallel distributed training the effective batch size is equal to 
the local batch size * number of learners.

• With a large number of learners the batch size can quickly become 
large enough to affect accuracy convergence.

• It is possible to reduce the batch size per learner (at least to one input 
per batch) but there is a performance trade-off with under-utilized 
GPUs.

Data Parallel Distributed Deep Learning:
Technical Considerations – Batch Size
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• The learning rate can be used to offset the negative impact of a larger 
effective batch size.

• Scaling the learning rate up by a factor of the number of GPUs speeds 
up learning, similar to the way that a smaller mini batch size speeds up 
learning.

• At some point a larger learning rate negatively impacts learning 
convergence.

Data Parallel Distributed Deep Learning:
Technical Considerations – Learning Rate
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• Data parallel distributed training does not work for batch normalization

– Batch norm operates on multiple samples(the entire global batch) at the 
same time.

o The overhead of fully synchronizing the mean and variance for the global 
minibatch quickly becomes unfeasible.

– Alternative 1:

o Do BN on small subsets (eg. The local minibatch) so these subsets can be 
normalized locally which increases scaling

o This is the default behavior in most frameworks.

– Alternative 2:

o Instead of BN, use alternate normalization techniques such as weight 
normalization

Data Parallel Distributed Deep Learning:
Technical Considerations – Batch Normalization
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Data Parallel Distributed Deep Learning:
Technical Considerations – On-The-Fly Validation

• Most frameworks support some method
of on-the-fly validation.

• If the validation is not also distributed, it 
will quickly bottleneck the training.
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• On-the-fly data processing can bottleneck distributed training.

• If the pre-processing of the input data was tuned to use the total 
available CPU processing when training on a single GPU, and that 
training is distributed to 6 GPUs in the box, then the GPUs will spend 
time waiting on the CPUs to finish the pre-processing.

Data Parallel Distributed Deep Learning:
Technical Considerations – Data Pipelining
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