

DstatDstat

plugin­based real­time monitoring

Dagit Linux Solutions
dag@wieers.com

mailto:dag@wieers.com

Objective of this presentationObjective of this presentation

● Give a little bit of background information

● Explain and demonstrate this really simple tool

● Future development

● Receive feedback from developers and system
administrators to advance Dstat (that means
you !)

Who am I ?Who am I ?

● Started with Linux in 1994
● Worked 6 years at IBM Belgium Linux team
● Now freelance Linux and Open Source

consultant
● Member of the CentOS development team
● Founded RPMforge repository in 2003
● Developer of a few sysadmin tools like mrepo,

dconf, unoconv, proxytunnel and, of course,
dstat

A case for DstatA case for Dstat

● Customer project in 2004: install and optimize a
5 node GPFS cluster connected via 2 FC to 3
SANs (more than 128 LUNs per system)

● 60 windows NLE clients using CIFS to connect
to Samba frontends that shared GPFS

● GPFS allows to stripe (in parallel) to all
available disks to optimize bandwidth usage of
local HBA, multipath, SAN controllers and disk
expansion units

A case for DstatA case for Dstat

● How can I monitor multiple nodes
simultaneously ?

● How can I select only those system counters
and application counters to validate
performance numbers ?

● How can I make it easier to correlate counters
and see usage patterns ?

● How can I follow progress during performance
test and validate a test during and after it has
finished ?

A case for DstatA case for Dstat

● Many tools exist to monitor resources
● Some allow to customize or write own counters

– mrtg, nagios, cacti, munin, ...
● Some are command line

– vmstat, ifstat, top, htop, sar, ...
● None allow both
● Most command line tools feel arcane

A case for DstatA case for Dstat

● ...and it provided an excuse to learn python at
the time

A case for DstatA case for Dstat

● Design goals (problems with eg. vmstat)
– Needs to be extendable
– Selection of counters
– Human readable and easy to interprete
– Show progress before showing average
– Ability to export data for processing and reporting

● So without further ado....

Dstat featuresDstat features

● History of counters (use terminal buffer)
● Adding unit indication (B = bytes, k = kilobytes)
● Fixed width columns
● Colour highlighting
● Intermediate updates (feel how things progress)
● Adding your own counters and selecting plugins
● Exporting to CSV
● Works with python 1.5.2 and later (CentOS 2)

Dstat featuresDstat features

● Use terminal capabilities
● Comes with plenty of plugins already:

– time, cpu, disk, net, mem, interrupts, system, load,
swap, paging, tcp, udp, raw, unix, locks, ipc,
process, ...

– dbus, gpfs, freespace, innodb, mysql, mysql5, nfs,
postfix, rpc, sendmail, utmp

– vmware, openvz
– battery, cpufreq, thermal, wifi
– topcpu, topio/topbio, topmem, topoom

Using Dstat: selecting pluginsUsing Dstat: selecting plugins

● Internal vs. external plugins
● Internal plugins: short options and long options
● External plugins: use -M option
● Example:

– dstat -tcd
– dstat –time –c pu – disk
– dstat -M time,cpu,disk
– dstat -M time -M cpu -M disk

Using Dstat: ordering pluginsUsing Dstat: ordering plugins

● The order of the options influence the order of
the counters

● Anomaly: try this:
– dstat -cccc

● or:
– dstat -c -M cpu -c -M cpu

Total or individual counters ?Total or individual counters ?

● Some of the plugins show total values
● You can override the behaviour

– -f or –full to see all individual counters
– -C, -D (capital options) to select individual counters

● Use 'total' to see the total together with
individual counters, eg:
– dstat -c -C total,0,1
– dstat -d -D total,sda,sdb

Influencing outputInfluencing output

● Disabling colours: --nocolor
● Disabling header repetition: --noheader
● Disabling intermediate updates: --noupdate

● or simply use Unix as it was designed
– dstat -af | cat

● Appending detailed output to CSV: --output

Dstat use-casesDstat use-cases

● Simple system check
– dstat -taf

● What is the system doing now ?
– dstat -c -M topcpu -dng -M topmem

● What process is using all my CPU, memory or
I/O at 4:20 AM ?
– screen dstat -tcy -M topcpu 120
– screen dstat -tmgs -M topmem 120
– screen dstat -tdi -M topbio 120

Dstat use-cases (2)Dstat use-cases (2)

● What device is slowing down my system ?
– dstat -tyif
– dstat -tyi -I 12,58,185 -f 5

● Is my SWRAID performing as it claims ?
– dstat -td -D md0,md1,sda,sdb,hda

● How much ticks per second on my kernel ?
– Dstat -t

Using Dstat as a moduleUsing Dstat as a module

● Dstat itself can be used as a python module
● Accessing counters (raw values and

differences)
● Examples in sources:

– read.py: get raw values from plugins
– mstat.py (milli-stat): shows sub-second values,

useless but ubergeeky

Known issuesKnown issues

● Counter rollovers (be aware !)
● Performance issues ?

– Dstat is NOT optimized for performance !
– It's ironic, for a performance monitoring tool
– Debugging dstat performance with --debug

● Writing plugins in C
– Possible, but needs expertise

● Python 1.5 has limitations

Future developmentFuture development

● Improvements to colour and meaning
● Exporting to syslog
● Add more plugins

– Xen plugins
– Systemtap template plugin
– SNMP template plugin
– Samba plugin (lacks interface ?)
– Xorg resources, maybe topx (see xrestop)
– Slab counters (need expert to group counters)

What is next ?What is next ?

● Create an abstract object model and
namespace for counters ?

● Ripping the counters/plugins out of Dstat into a
framework
– Getting rid of the Dstat specific fluff

● Lots of possibilities:
– Framework could allow to write C, perl or python

plugins
– Reusing plugins from rrdtool, nagios, mrtg, munin

Dstat pointersDstat pointers

● Website and download
– http://dag.wieers.com/home-made/dstat/

● Subversion/sourcecode
– http://svn.rpmforge.net/svn/trunk/tools/dstat/

● Mailinglist
– tools@lists.rpmforge.net

http://dag.wieers.com/home-made/dstat/
http://svn.rpmforge.net/svn/trunk/tools/dstat/

Writing Dstat pluginsWriting Dstat plugins

● Plugin instantiates dstat() python class
● Infrastructure is provided by the class
● Extra functions exist to simplify the actual

plugins, eg:
– dopen: keeps filedescriptors open and seek(0)
– dpopen: keeps a pipe open to an application to

write to and read from
– readpipe/greppipe/matchpipe: parsing information

Writing Dstat plugins (2)Writing Dstat plugins (2)

● Introducing the helloworld plugin
– see the dstat paper
– or simply look at dstat_helloworld.py

● Parsing counters
– see the dstat paper
– Or simply look at eg. dstat_postfix

